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On the use o:f Machine Vision Techniques to Detect Human 
Settlements in Satellite Images 

Chaiidrika Kamath, Sailes E(. Sengupta, Douglas Poland, and John A. H. Futterman 

Lawrence Livermore National Laboratory 
7000 East Avenue, Livermore, CA 94551, U.S.A 

ABSTRACT 
The automated production of maps of human settlement from recent satellite images is essential to studies 
of urbanization, population movement, and the like. The spectral and spatial resolution of such imagery is 
often high enough to successfully apply computer vision techniques. However, vast amounts of data have to be 
processed quickly. In this paper, we propose an approach that processes the data in several different stages. 
At each stage, using features appropriate to that stage, we identify the portion of the data likely to contain 
information relevant to the identification of human settlements. This data is used as input to the next stage of 
processing. Since the size of the data has reduced, we can now use more complex features in this next stage. 
These features can be more representative of human settlements, and also more time consuming to extract from 
the image data. Such a hierarchical approach enables us to process large amounts of data in a reasonable time, 
while maintaining the accuracy of human settlement identification. We illustrate our multi-stage approach using 
IKONOS 4-band and panchromatic images, and compare it with the straight-forward processing of the entire 
image. 
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1. INTRODUCTION 
Maps of human settlement produced from satellite imagery are a key part of any application in which urban land 
cover, land use, or boundary is a consideration. The resolution of current satellite imagery is often fine enough 
that even small villages can be accurately identified. For example, the IKONOS imagery' that we consider in this 
paper is available at 4 meter Ground Sample Distance (GSD) as 4-band multi-spectral data as well as 1 meter 
GSD panchromatic data. However, at this fine resolution, the volumes of data are such that semi-automated 
techniques must be used to sift through the data. 

In this paper, we describe a multi-stage approach to the semi-automated production of maps of human settle- 
ments from satellite data. We are interested in exploiting both the 4-band multi-spectral and the panchromatic 
imagery from IKONOS as they provide complementary information at different resolutions and wavelengths. In 
order to mitigate the resulting increase in the size of the data, we process the data in several stages. In the initial 
stages, we apply low-level image processing to the multi-spectral imagery to identify regions that are unlikely to 
contain human settlements. In the later stages, focusing on only those regions that are likely to contain human 
settlements, we use the higher resolution panchromatic imagery of the same scene to detect edges, corners, and 
other human-made features in the data. This refines these regions, reducing the false positives. 

The use of a multi-stage approach to process the data is not new. For example, a four stage approach has 
been used for land-cover/land-use classification of urban areas.2 These stages include feature extraction, feature 
coding, feature selection, and classification. Starting with 6-channel data from Landsat TM and 1-channel from 
ERS-1 SAR, the data is first spatially resampled to 25 meter/pixel. From this data, various statistical, textual, 
and Gabor features are extracted. Next, these features are coded using Self-organizing Maps.3 As the number 
of features is still quite large: Classification And Regression Trees (CART)4 are used to select a subset of the 
features. Finally, these features are input to multi-layer perceptrons and the k-nearest neighbor classifier to 
classify the data into one of 33 classes. A similar multi-stage approach has also been used with Landsat TM 
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and SPOT Pan data at 10-m pixel size to detect buildings in urban areas5 Using texture analysis, the authors 
show that by incorporating spatial information with spectral information, they can obtain a higher accuracy for 
unsupervised classification of the data. 

These earlier efforts focused on techniques that were appropriate to the resolution of the imagery sources 
available and the classification problem being addressed. In this paper, we illustrate our multi-stage approach 
using 4 channel (near-IR, red, green, and blue), 4m GSD multi-spectral data and 1 channel, l m  GSD panchro- 
matic data from the IKONOS imagery. The paper is organized as follows: Section 2 describes the different stages 
in our approach. Section 3 evaluates our approach using sample images. The different options used are evaluated 
for their effectiveness, robustness, and computational efficiency. Finally, in Section 4, we summarize our work 
and discuss future directions. 

2. TECHNICAL APPROACH 
In order to extract human settlements in IKONOS multi-spectral and panchromatic satellite imagery, we use a 
multi-stage approach with the following stages: 

0 Using supervised or unsupervised classification, we first segment the multi-spectral image into k classes. 

0 Next, using simple statistics based on the distribution of these classes within a small window (or tile) in 
the image, we identify the tiles in the image that are likely to contain human settlements. 

Focusing on these tiles, we apply an edge and corner detector to the panchromatic imagery of the same 
scene. 

0 Tiles which have a sufficient number of edges and corners are identified as likely to contain human settle- 
ments. 

We next describe each of these stages in further detail using a sample image. 

2.1. Analysis of the multi-spectral imagery 
Figure 1, panel (a), shows a 400 x 400 pixel, 4-band IKONOS multi-spectral image from the Nebraska region of 
North America. It includes both areas with human settlements (Le. houses and other buildings) as well as open 
areas. Based on a visual analysis of the image, 6 separate classes were identified, corresponding to lush vegetation, 
not-so-lush vegetation, tarred roads and parking lots, concrete roads and rooftops, very bright surfaces such as 
rooftops, and dirt (with sparse vegetation). Of course, if we had selected an image from a different region of 
the world, or even the same image in a different season, the number and type of classes would likely be quite 
different. 

Once the classes have b(een identified, a training set is generated with sufficient number of pixels from each 
class. In our example, we selected approximately 800 pixels from each of the classes, resulting in a training set of 
4860 pixels. The training set was created by first selecting sample regions from each of the classes in the image 
and then extracting the features for the pixels in these regions. As we are working with multi-spectral data, the 
features are just the intensity values for the near-IR, red, green, and blue bands. The sample regions from which 
these pixels were selected are highlighted in Figure 1, panel (b). 

Next, to check that the training set was a good representation of each class, we generated parallel plots for 
the pixels in each of the six classes. Parallel plots are often used in the visualization of high-dimensional data. 
Instead of the traditional coordinate system where the axes are perpendicular to each other, in parallel plots the 
axes are parallel to each other. As a result, more than three variables or dimensions can be visualized easily. 
Figure 2 displays the parallel plots for the initial set of pixels that were chosen as the training set for the image 
in Figure 1, panel (a). Each parallel plot has on the x-axis the five features or variables (near-IR, red, blue, 
green, and the class) and on the y-axis the corresponding values of the variable for each pixel. Thus a pixel is 
represented by the line segments that connect the values of the five variables. Note that for most of the classes, 
the parallel plots lie within a narrow band, indicating that the class is well defined. Also note that classes 2 ,  4, 



5 ,  and 6 have several outliers, that is, pixels that appear not to fit in the class. This is the result of the way 
in which the regions were selected to form a training set. While care was taken to select regions with pixels 
belonging to predominantly one class, this was not always possible, resulting in the outliers _. in . the parallel plots. 
These outliers were remc plots in Figure f 
€or classes 2 and 6. 

Note that there is very lit”-., . 
well separated in feature space, , 
error. 

In the approach described in this paper, we use supervised techniques for classifying the pixels in the n 
pectral image. Our experiences with unsupervised techniques are summarized in a companion paper.6 

Once the training set was chosen, it was used to build a decision tree model. Decision  tree^^,^,' 1 
he category of classification algorithms wherein the algorithm learns a function that maps a data item into on 

of several pre-defined classes. The development of these algorithms typically has two phases. In the training 
phase, the algorithm is “trained” by presenting it with a set of examples with known classification. In the test 
phase, the model created in the training phase is tested to determine how well it classifies known examples. If th 
esults meet expected accuracy, the model is put into operation to classify examples with unknown classificatior 

A decision tree is a structure composed of leaves and decision nodes. Data is introduced at a single point 
(the root) and proceeds toward one of the terminal nodes (or leaves), which represent classes. Each split in the 
tree is a decision node that specifies some test to be carried out on a feature (or a combination of features), with 
a branch and sub-tree for each possible outcome of the test. The decision at each node of the tree is made to 
reveal the structure in the data. Decision trees tend to be r-’-‘ively simple to implement, yield results that ca- 
be interpreted, and have built-in dimensional reduction. 

For the work in this paper, we used the decision tre .re from the Sapphire data mining p r ~ j e c t . ~  For 
.he classificationd the pixels in the multi-spectral image, we used axis parallel splits at each node of the decision 

In such splits, the decision at each node of the tree is based only on a single feature. The splitting criterion 
a t  each node of the 1,ree was the Gini splitting ~ r i t e r ion .~  This criterion is based on finding the split that 

hces the node impurity, where the impurity is defined as follows: 
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Figure 2. Parallel plots indicating the distribution of the features for the six classes before removal of outliers. The 
x-axis shows the five features (intensity values for the near-IR, red, green, and blue bands, and the class). The y-axis is 
the value of the corresponding feature. (a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e)  Class 5 (f) Class 6 



Figure 3. Parallel plots indicating the distribution of the features for the classes 2 and 6 after removal of outliers. The 
x-axis shows the five features (intensity values for the near-IR, red, green, and blue bands, and the class). The y-axis is 
the value of the corresponding feature. (a) Class 2 (b) Class 6 

where /TL( and ITEI are the number of examples, and L ~ i ~ i  and R ~ i ~ i  are the Gini indices on the left and 
right side of the split, respectively. Lj and Iz, are the number of instances of class j on the left and the right, 
respectively, and n is the total number of examples at a node. We used this splitting criterion as our previous 
experiences indicated that it worked well in practice. 

The tree created using the entire training set is shown in Figure 4. The features B1, B2, B3, and B4 are the 
intensity values for near-IR, red, green, and blue bands respectively. The decision tree output lists the feature 
selected at each node, as well as the value it is compared against. The number after the colon indicates that the 
node in question is a leaf node, and the number is the class assigned to the leaf. At each leaf node, the numbers 
(a/b) indicate the (total number of samples/samples of the class not assigned to leaf node). 

No pruning was applied to this tree to reduce the generalization error. An average of ten runs of ten-fold 
cross-validation with the training set resulted in an error rate of less than 1%. In each run, we divided the 
training set randomly into ten equal part, trained using nine of the parts, and tested on the tenth part, cycling 
through all the parts in turn. 

Once the decision tree was created using 4860 pixels from the regions in Figure 1, panel (b), it was used to 
classify all the 160,000 pixels in the image in Figure 1, panel (a). This resulted in the image in Figure 5, panel (a), 
where each of the six classes is indicated by a different color. For comparison, the result of the k-means algorithm 
(with k=6) for unsupervised classification of the same image i s  given in Figure 5 ,  panel (b). A comparison of 
the Figures 1 panel (a), and the two panels in Figure 5 indicates that the decision tree is able to generalize quite 
well in classifying all the pixels in the full image. 

Once the first stage of classification of the pixels in the multi-spectral image is completed, we use it to 
identify "windows" or "tiles" in the image likely to indicate human settlements. The approach used for this 
was motivated by the observation that area5 in the image with settlements tended to contain a mix of pixels of 
different classes with a random spatial distribution. Therefore, by dividing the image into non-overlapping tiles, 





each of 10 x 10 pixels, we could use some simple statistics to determine if the tile was likely to contain human 
settlements or not. The focus in this stage was to remove areas with a homogeneous distribution of spectral 
classes from further consideration. The remaining areas were then processed further to determine if they contain 
man-made structures or not. 

We tried the following simple methods to identify tiles with a mix of pixels: 

0 Method 1: In each tile, we count the number of pixels which have their four neighbors of the same class 
as the pixel in the center. If the percentage of such pixels in a tile exceeds a certain threshold, then we 
identify the tile as “unmixed” or unlikely to contain human settlements. It is also possible to include 
additional constraints to ensure that sufficient number of pixels from several different classes are included 
in each “mixed” tile. 

Method 2: This method uses the class-level co-occurrence matrix (CLCM) for each tile in the horizontal 
and vertical directions. The CLCM is analogous to the grey level co-occurrence matrix” with the class 
labels being used instead of the gray levels. The sum of the off-diagonal elements of the 6 x 6 CLCM can 
be used to determine if a tile is mixed or not. If the percentage of off-diagonal elements is greater than a 
threshold, the tile is considered to be mixed. Note that we do not need to explicitly calculate the CLCM. 
We only need to count the number of times the class of a pixel is different from the class of the pixel to its 
right (for the horizontal CLCM) or below it (for the vertical CLCM). 

Method 3: 

This is a generalization of methods 1 and 2. Here we use various statistics (features) derived from the 
CLCM as features to be used in an unsupervised classification mode. Depending on the set of statistics 
used, it has the potential of discriminating not only mixed and spatially homogeneous tiles but also different 
types of mixed tiles. For this paper, we use only two features, the angular second moment (ASM) and 
entropy (ENT),ll defined for a 10x10 tile in a manner similar to features with the same names in the 
context of gray level co-occurrence matrix for a single band. We have used these two features as inputs 
to the Isodata12 clustering algorithm to cluster all 10x10 non-overlapping tiles obtained as sub-images and 
covering the full image. We have specified the lower and upper bounds on the number of clusters to be 2 
and 4, respectively. As an option, we have also used a threshold of 2.5 times the standard deviation for the 
cluster spread about its mean. The clustering procedure led to two clusters under each option. In a tile 
with mixed pixels one would expect the ASM to be low and ENT to be high. This observation allowed us 
to identify the two clusters representing the tiles with mixed and “unmixed” pixels respectively. 

Note that the approach for identifying the mixed tiles, as well as the use of a threshold, enables us to tolerate 
some misclassification error in the first stage of our multi-stage process. 

Once the mixed tiles have been identified, a mask is created that masks out all the unmixed tiles as shown 
in Figure 6, panel (a). This particular mask was generated using Method 2 ,  with a threshold of 40%. The tiles 
that have been masked out are those which had the percentage of off-diagonal elements in the CLCM less than 
40%. The unmasked areas in the image are the ones likely to contain human settlements. It is these areas that 
are considered for further processing using the panchromatic imagery. 

2.2. Analysis of the panchromatic imagery 
After the multi-spectral image has been processed using pixel-level classification, and the “mixed” tiles identified 
as the ones likely to contain human settlements, the scene is processed further using the panchromatic l m  GSD 
data. First, the mask that was generated using the multi-spectral data is scaled by a factor of 4 and transferred 
to the Panchromatic image, as shown in Figure 6, panel (b). Next, we use the SUSAN13 edge and corner detector 
to identify the edges and corners of potentially man-made structures. 

The output of SUSAN is illustrated using a sub-image from the panchromatic scene, Figure 7, panel (a). 
Panel (b) is the sub-image with the masked tiles from Figure 6, panel (b). The unmasked tiles in this sub-image 
include both areas with buildings and areas without buildings. Panels ( c )  and (d) are the outputs from the 





Figure 7. SUSAN edge and corner detector applied to a sub-image from Figure 6 ,  panel (b). (a) Original sub-image. (b) 
Sub-image with the mask from Figure 6 ,  panel (b). (c) Edges using SUSAN with option (-e -t 40), after smoothing. (d) 
Corners using SUSAN with option (-c -t 40), after smoothing. (e) The original sub-image with masked tiles indicating 
tiles with edge and corner frequency less than the threshold. (f) The original sub-image with both the masked tiles from 
panel (e) and the masked tiles from panel (b). Original satellite images by Space Imaging. 

successful. This indicates that it might be possible to build models that would be tuned to different regions of 
the world, with possible sub-models to  account for seasonal and other variations. 

3.2. Computational accuracy 
Our initial experiments indicate that our approach exploiting both the multi-spectral and the panchromatic 
images is likely to  be more accurate than using either type of image by itself. For example, just using the 
panchromatic imagery, along with the edges and corners, may result in false positives in areas of the scene where 
there are roads and cars without any human settlements nearby. Or, a ‘‘mixed” tile in multi-spectral imagery 
may be mixed for reasons other than human settlements. We are currently conducting additional experiments 
to  better understand how the two types of imagery help us to mitigate false positives. 

Note also that the early stages of the multi-stage process do not have to be very accurate. Even if a pixel is 
mis-classified, such errors do not have a drastic effect on the final result. This is because we are working at the 
tile level, interested in regions that are not composed of isolated tiles, and processing the data in several stages. 

3.3. Computational efficiency 
A key part of the hierarchical approach is the savings in computational time. While the SUSAN code is quite 
efficient in smoothing a small (e.g., a 400 x 400 pixel image), and finding edges and corners in it, the cost of this 
processing can still be prohibitively expensive when millions of such images are being processed. By applying 
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